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Abstract—In recent years, multiobjective immune algo-
rithms (MOIAs) have shown promising performance in solving
multiobjective optimization problems (MOPs). However, basic
MOIAs only use a single hypermutation operation to evolve
individuals, which may induce some difficulties in tackling
complicated MOPs. In this paper, we propose a novel hybrid
evolutionary framework for MOIAs, in which the cloned indi-
viduals are divided into several subpopulations and then evolved
using different evolutionary strategies. An example of this hybrid
framework is implemented, in which simulated binary crossover
and differential evolution with polynomial mutation are adopted.
A fine-grained selection mechanism and a novel elitism shar-
ing strategy are also adopted for performance enhancement.
Various comparative experiments are conducted on 28 test MOPs
and our empirical results validate the effectiveness and com-
petitiveness of our proposed algorithm in solving MOPs of
different types.

Index Terms—Artificial immune system, elitism strategy,
hybrid evolution, multiobjective optimization problems (MOPs).

I. INTRODUCTION

MANY scientific and engineering applications give
rise to problems that require the simultaneous opti-

mization of several (often conflicting) objectives. They are
called multiobjective optimization problems (MOPs), and their
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solution consists not of a single solution, but of a set of them,
representing the tradeoffs among the objectives. Such solutions
conform to the so-called Pareto-optimal set (PS). The corre-
sponding objective vectors of PS are called the Pareto-optimal
front (PF) [1].

During the last two decades, evolutionary algorithms (EAs)
have been widely used to solve MOPs, because of their
generality (they require little specific domain information)
and because of their population-based search nature, which
allows them to produce multiple Pareto-optimal solutions in
a single run [2]. The best-known state-of-the-art multiobjec-
tive EAs (MOEAs) include Nondominated Sorting Genetic
Algorithm II (NSGA-II) [2], Strength Pareto Evolutionary
Algorithm (SPEA2) [3], and MOEA based on decompo-
sition (MOEA/D) [4]. NSGA-II adopts a fast nondomi-
nated sorting approach combined with a crowded-comparison
operator and an elitist strategy. This nondominated sorting
approach has been recently improved by using more efficient
approaches [5], [6]. SPEA2 uses a fine-grained fitness assign-
ment strategy and a density estimation technique based on
clustering. MOEA/D decomposes MOPs into a set of single-
objective optimization subproblems and then optimizes them
simultaneously. In recent years, many new approaches have
been proposed to speed up convergence and to improve the
diversity of MOEAs [7]–[17]. Regarding convergence speed
up, Tan et al. [7], [8] proposed an adaptive mutation operator
and an enhanced exploration strategy, Adra et al. [9] devel-
oped a convergence acceleration operator and Yu et al. [10]
presented a tradeoff approach to switch between coarse local
search and fine local search. Regarding the enhancement of
population diversity, Ishibuchi et al. [11] proposed a nonge-
ometric binary crossover, Zhan et al. [12] presented a new
optimization framework for MOPs based on the use of mul-
tiple populations, Li et al. [13] reported a stable matching
model for the individuals and subproblems in MOEA/D, and
Gee et al. [14] designed an online diversity metric to measure
the diversity loss caused by any individual in the popula-
tion. Additionally, other nature-inspired heuristic algorithms
have also been modified to solve MOPs, including coevo-
lutionary algorithms [18], [19], scatter search [20], particle
swarm optimization (PSO) [21], [22], and artificial immune
systems [23]–[25].

Compared with MOEAs, multiobjective immune algo-
rithms (MOIAs) have shown some advantages related to
an improved convergence speed and maintaining a better
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population diversity [23]. Specifically, MOIAs are character-
ized by the clonal selection principle, in which only a small
proportion of individuals with better convergence and diver-
sity are proliferated to produce multiple clones [23]–[25].
Then, each clone is evolved by hypermutation to search
for the better individuals. In this way, superior individuals
have more opportunities for evolving, which helps to speed
up convergence. However, most MOIAs only adopt a single
hypermutation operator to evolve each clone [23]–[25], which
may induce some difficulties in solving complicated MOPs
(e.g., complicated unconstrained MOPs such as the uncon-
strained functions (UFs) in [26]). This may be due to the fact
that a single hypermutation operator will have difficulties to
achieve a proper balance between proximity and diversity. This
conforms to the no-free-lunch theorem that states that a single
search strategy cannot have the best performance in terms of
both proximity and diversity [27]. This motivated us to study
whether multiple search strategies can be combined in MOIAs
so that their search patterns can complement each other.
Therefore, in this paper, we propose a novel hybrid evolution-
ary framework for MOIAs (HEIA), in which the cooperation
of multiple evolutionary strategies allows us to combine their
advantages and overcome the inherent limitations of adopt-
ing a single strategy. Our proposed approach is more capable
of maintaining the tradeoff between proximity and diversity,
and, consequently, has better performance than other multi-
objective optimization algorithms when dealing with different
types of MOPs. To validate the effectiveness of our hybrid
framework, an implementation example is proposed, which
considers simulated binary crossover (SBX) [28] and dif-
ferential evolution (DE) [29] followed by polynomial-based
mutation as two evolutionary strategies. The main features of
our proposed HEIA are the following.

1) The cloned population is randomly divided into several
subpopulations, which will be subject to different evo-
lutionary strategies, separately. This hybrid framework
with multiple evolutionary strategies is different from the
traditional MOIAs that only apply one hypermutation
operator on the cloned population. The cooperation of
multiple evolutionary strategies in our scheme can over-
come the inherent limitations of using a single strategy,
and enhances the exploratory capability and robustness
of our proposed approach, thus allowing it to handle
a wide variety of MOPs.

2) Two evolutionary strategies are included in HEIA. The
first one adopts SBX followed by polynomial-based
mutation. This strategy is found to perform well on
simple MOPs with independent decision variables. The
second strategy applies DE crossover and polynomial-
based mutation, and is especially effective for compli-
cated problems with variable linkages (i.e., parameter
dependencies) [29]. These two evolutionary strategies
can complement each other by exploiting their advan-
tages and it is experimentally shown that they perform
better than the separate use of any of them.

3) A fine-grained selection mechanism and a novel eli-
tist sharing strategy are adopted in HEIA. After the
hybridized evolution from item 2) shown above is

undertaken, the subpopulations are combined with an
elitist archive and a fine-grained selection mechanism
proposed in our previous work [25], with the aim of
preserving the nondominated individuals found in the
elitist archive. An elitist sharing strategy is then operated
by selecting some less-crowded individuals (measured
by the crowding distance metric [2]) from the elitist
archive. Such individuals are cloned and divided into
different subpopulations for independent evolution in the
next generation. In this way, the search experience of one
subpopulation can be shared by another subpopulation.

The improvements of the proposed hybrid framework
are also validated with an experimental study. To have
a comprehensive evaluation of the performance of our
proposed HEIA, four different test suites were adopted.
Such problems are the Zitzler–Deb–Thiele (ZDT) test
suite [30], the walking fish group (WFG) test suite [31],
the Deb–Thiele–Laumanns–Zitzler (DTLZ) test suite [32],
and the UF test suite adopted at the competition held at
the 2009 IEEE Congress on Evolutionary Computation
(2009) [26]. When compared with various nature-
inspired multiobjective algorithms, i.e., two state-of-the-art
MOEAs (NSGA-II [2] and SPEA2 [3]), an Archive-
Based Hybrid Scatter Search Algorithm (AbYSS) [20],
MOEA/D [29], a novel PSO-based multiobjective
algorithm (SMPSO) [33], and three MOIAs (Novel
Immune Clonal Algorithm (NICA) [23], Nondominated
Neighbor-based Immune Algorithm (NNIA) [24], and
Micro-population Immune Multiobjective Optimization
algorithm (MIMO) [25]). HEIA has been found to be
advantageous in terms of convergence speed and population
diversity. The effectiveness of the proposed hybrid evolution-
ary strategy and the influence of the parameters settings on
its performance are also studied experimentally, which further
confirm the improvements yielded by HEIA.

The remainder of this paper is organized as follows. In
Section II, the related work of MOPs and MOIAs is pro-
vided. In Section III, the proposed hybrid framework and its
implementation example are described in detail. Section IV
presents the experimental results of HEIA, when compared to
other multiobjective metaheuristics. Our conclusion and some
possible paths for future work are described in Section V.

II. RELATED WORK

A. Multiobjective Optimization Problems

MOPs naturally arise in many practical applications, which
are aimed at optimizing multiple, possibly conflicting objec-
tives, simultaneously. Without loss of generality, we formulate
the general multiobjective problem as

Min
x∈�

F(x) = ( f1(x), f2(x), . . . , fm(x))T (1)

where x = (x1, x2, . . . , xn) is an n-dimensional decision vec-
tor bounded in the decision space �, the mapping function
F : � → Rm defines m objective functions, and Rm is called
the objective space. However, since the objectives may be
in conflict with each other, the optimization of one objective
can result in the deterioration of another objective. Normally,
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no single solution can optimize all the objectives simultane-
ously. The best tradeoffs among the objectives can be properly
attained by using the definition of Pareto-optimality [27].

Definition 1 (Pareto Dominance): A decision vector x is
said to dominate another decision vector y (noted as x � y) if
and only if

(∀i ∈ {1, 2, . . . , m} : fi(x) ≤ fi(y))

∧ (∃j ∈ {1, 2, . . . , m} : fj(x) < fj(y)
)
. (2)

Definition 2 (Pareto-Optimal): A solution x is said to be
Pareto-optimal if and only if

¬∃y ∈ � : y � x. (3)

Definition 3 (Pareto-Optimal Set): The set PS includes all
Pareto-optimal solutions, defined by

PS = {x|¬∃y ∈ � : y � x}. (4)

Definition 4 (Pareto-Optimal Front): The set PF includes
the values of all the objective functions corresponding to the
Pareto-optimal solutions in PS

PF = {
F(x) = ( f1(x), f2(x), . . . , fm(x))T

∣∣x ∈ PS
}
. (5)

In this paper, the best solutions (possibly suboptimal) pro-
duced by an algorithm can also be treated as a PF, when
the true PF defined in (5) is unavailable in practical cases.
To distinguish these two types of PF, PFtrue is used to refer
to the true (or optimal) PF as defined in (5), while PFknown
is employed to represent the best solutions produced by an
algorithm.

B. Immunology Terms in MOIAs

As MOIAs are designed based on the principles and
processes of biological immune systems [34], [35], some
immunological terms used in MOIAs are introduced next in
order to better understand them.

Definition 5 (Antigen): An antigen refers to the problem
and constraints to be solved, e.g., the minimization problem
F(x) in (1).

Definition 6 (Antibody): An antibody refers to a candi-
date solution of the target problem, e.g., the decision variable
x in (1).

Definition 7 (Affinity): Affinity usually represents the objec-
tive function values or the fitness measurement of the problem
related to a candidate solution.

To mimic the clonal selection principle, MOIAs usually
apply the cloning operator, which generates copies of the anti-
bodies that are selected due to their better affinities. After that,
hypermutation (which refers to applying a mutation operator
at a high rate), is applied on each clone to alter the decision
variables. This process is aimed at searching the antibodies
with better affinities and achieving affinity maturation (i.e.,
individuals that represent better solutions). The set of anti-
bodies is called an antibody population. Using the definition
of Pareto dominance, an antibody is called a nondominated
antibody when it is not dominated by any other antibodies in
the population.

C. Related Work on MOIAs

The first MOIA was reported in [36], and incorporated
the concept of antibody-antigen affinity into a standard
genetic algorithm to modify its fitness assignment mecha-
nism. Afterward, many other MOIAs were designed, most
of which have a superior performance. Based on the spe-
cial features inspired by the immune system, MOIAs can be
classified into three categories: 1) clonal selection approaches;
2) immune network approaches; and 3) hybrid approaches (i.e.,
combinations of an immune system with another heuristic).

A multiobjective immune system algorithm (MISA) based
on clonal selection was proposed in [37]. In this approach,
only the antibodies with high affinities are proliferated to
generate multiple clones, and an adaptive grid is used to
maintain diversity. The performance of MISA was further
improved in [38]–[40]. An immune dominance clonal mul-
tiobjective algorithm was introduced in [41]. This approach
adopts the antibody–antibody affinity to reflect the similarity
among antibodies. This guides the cloning operator to select
an effective search region (i.e., the least-crowded region). This
approach was further extended to solve dynamic MOPs [42]
and it was improved in [24]. A novel MOIA using a multiple-
affinity model was presented in [43]. This approach adopts
six measures for affinity assignment, where cloning, hyper-
mutation, and immune suppression were applied according
to such affinity measurements. In this case, immune suppres-
sion refers to removing similar antibodies in both variable and
objective space.

On the immune network approach, a vector artificial
immune system [44], [45] was extended from the artificial
immune network algorithm (opt-aiNet) [46] to solve MOPs.
In this case, two evolutionary loops are performed. The inner
loop is aimed at exploiting the search space, while the outer
one is aimed to avoid the redundancy produced by similar anti-
bodies (suppression is used to avoid such redundancy). A novel
weight-based MOIA was presented in [47]. This approach
adopts a random-weighted sum method as its fitness assign-
ment scheme combined with a new truncation algorithm that
eliminates similar individuals. Its authors claimed that this
approach has a low computational complexity and is able to
obtain a well-distributed PFknown.

Regarding hybrid approaches, one called immune-inspired
Pareto archived evolution strategy was introduced in [48].
In this approach, two hypermutation operators are combined
to solve an MOP extracted from ab initio protein structure
prediction problems. An evolutionary artificial immune algo-
rithm designed for solving MOPs was reported in [49]. This
approach combines the global search capabilities of EAs with
the learning capabilities of artificial immune systems. A novel
immunity-based hybrid EA was proposed in [50] to tackle
both unconstrained and constrained MOPs. This approach
uses a sorting scheme featuring uniform crossover, multi-
point mutation, and crowding distance sorting, to efficiently
approximate PFtrue.

In recent years, several new MOIAs with competitive
performance have been proposed. For example, a dynamic
MOIA was introduced in [51] for constrained nonlinear MOPs
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and it was extended for its use in greenhouse control [52].
A hybrid immune multiobjective algorithm was proposed
in [53]. This approach uses a hybrid operator combining
Gaussian and polynomial-based mutation. It was further
improved by using an adaptive mutation operator [25] and
a novel adaptive DE operator [54] with a fine-grained selec-
tion mechanism. An NICA [23] was reported to solve complex
MOPs. This approach adopts a full cloning scheme and a novel
antibody population updating operation after clonal selection.

However, in the above-mentioned MOIAs, most of them
only adopt a simple hypermutation operator to evolve the
antibodies, e.g., [23], [47], [51], and [52] only use a hyper-
mutation operator, while [24], [25], [43], and [53] utilize
a combination of one crossover operator with a muta-
tion operator. The use of simple evolutionary operators
in MOIAs may lead to a monotonous search pattern,
which makes the existing MOIAs incapable of tackling
complicated MOPs (e.g., the UF test problems [26]).
Actually, hybrid mutation approaches have been investigated
in immune algorithms [48], [53], [55], [56], with promising
results. Working in this same direction, this paper presents
a general HEIA, which adopts different search strategies to
complement each other, thus providing superior performance.
The cooperation of hybrid evolutionary strategies can over-
come the inherent limitations of using a single strategy and
is expected to be better and more robust when solving differ-
ent types of MOPs. To the best of our knowledge, this is the
first attempt to construct an HEIA. For MOEAs, some hybrid
frameworks have been proposed, e.g., Sindhya et al. [57] intro-
duced a hybrid framework for MOEAs, which uses a local
search module to speed up convergence. Tang and Wang [58]
proposed a novel hybrid MOEA, which incorporates the con-
cepts of personal best and global best in PSO and multiple
crossover operators. The differences between HEIA and exist-
ing hybrid MOEAs are the following. One natural difference
is that cloning is performed in HEIA, which generates multi-
ple copies of the high-affinity antibodies to be evolved, while
existing hybrid MOEAs generally evolve the entire popula-
tion. The other one is that the proposed hybrid operators in
HEIA are modified for MOIAs, e.g., SBX and DE crossover
are applied by selecting parent antibodies only from the cho-
sen high-affinity antibodies, while the evolutionary operators
in existing hybrid MOEAs usually select parents from the
entire population. To describe our proposed hybrid framework
in a better way, an implementation example is also included
in this paper and some experiments are carried out to assess
its performance.

III. PROPOSED FRAMEWORK AND IMPLEMENTATION

The framework of HEIA is shown in Fig. 1, where s is the
number of subpopulations. HEIA starts by initializing the pop-
ulation and by setting some relevant parameters. After that,
cloning is performed to get multiple copies of the selected
individuals (those with high affinity values). The clones are
then randomly divided into the equal-size subpopulations,
which are independently evolved using different evolution-
ary strategies in order to increase their affinities. The multiple

Fig. 1. Proposed framework of HEIA.

Algorithm 1 Initialization
1 set g = 0; //generation number
2 for i = 1to N
3 for j = 1to n
4 xij = li + rand() × (ui − li); //initialize each variable of xi
5 end for
6 evaluate the objective functions;
7 end for
8 add the nondominated antibodies to the elitist archive E;
9 calculate the crowding distance for each antibody in E;

evolutionary strategies can search various directions in solu-
tion space and avoid the inherent limitation of using a single
strategy. Finally, an elitist archive is used to collect all the
nondominated antibodies found by the subpopulations, which
enables each subpopulation to share their search results in the
next iteration. Any effective evolutionary operators designed
for MOPs can be used in this hybrid framework.

According to the framework of HEIA as shown in Fig. 1,
the antibodies will undergo four important procedures, i.e.,
cloning, evolution, elitist archive, and selection, to approx-
imate PFtrue. In order to validate the effectiveness of the
proposed framework, an implementation example is given here
by using two groups of well-known evolutionary operators.
One is SBX followed by polynomial-based mutation, which
is adopted in some of MOEAs and MOIAs using the real-
value variables [2], [3], [24], [25], [43]. The other one is DE
crossover plus polynomial-based mutation, which is especially
effective for solving some complicated MOPs with variable
linkages [29], [59], [60]. At first, the pseudocode of initializa-
tion is given in Algorithm 1, where N is the population size, n
is the number of decision variables in each solution, ui and li
are, respectively, the lower and upper bounds of the ith deci-
sion variable, rand() returns a uniformly distributed random
number in [0, 1]. All the nondominated antibodies in the initial
population are added to the elitist archive E and their crowd-
ing distances [2] are computed. The implementation details of
the other main procedures are described below.

A. Cloning

In biological immune systems, cloning refers to an asexual
propagation mechanism, which generates a group of identical
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cells from a single common ancestor [24]. In MOIAs, cloning
is simulated by cloning the high-affinity antibodies to per-
form hypermutation. In this paper, it is noted that the affinity
value of an antibody is assigned as the crowding-distance
value [2], so that high-affinity antibodies are those located
in less-crowded regions of the search space. Analogously
to the cloning operators reported in [24], [25], and [53], in
this paper, only a small proportion of high-affinity antibod-
ies from the elitist archive are cloned. This aims to promote
the exploration of less-crowded regions of the search space
in order to attain a better distribution of solutions along
the current PFknown. Let us assume that the antibodies with
higher affinities that have been selected for cloning are
denoted by A = [a1, a2, . . . , aNA], where NA is the num-
ber of selected individuals. The cloning operator TC can be
formulated as

TC(A) = [TC(a1), TC(a2), . . . , TC(aNA)] (6)

where TC(ai) = qi × ai(i = 1, 2, . . . , NA) is to reproduce qi

copies of ai. Here, the value of qi is set as

qi =
⌈

N × fit(ai)
∑NA

j=1 fit
(
aj

)

⌉

(7)

where fit(ai) is the affinity value of antibody ai and N is
the population size. The affinity value of antibody ai can be
obtained as

fit(ai) =
m∑

j=1

fitj(ai)

fj max − fj min
(8)

where fj max and fj min are, respectively, the maximum and
minimum values of the jth objective obtained by the current
population, and

fitj(ai) =
{∞, if

(
fj(ai) == fj min

)
or

(
fj(ai) == fj max

)

f
′
j

(
a′

I(i)+1

)
− f

′
j

(
a′

I(i)−1

)
, otherwise

(9)

where f
′
j (a

′
I(i)) is to sort the antibodies according to the jth

objective in descending order and I(i) is the new index of
ai after sorting. As the affinity values of boundary anti-
bodies are set to ∞ in (9), it is not applicable to get the
clone number in (7). In this case, it is set as the dou-
ble of the maximum affinity value except for the boundary
antibodies [24], [25], [53].

B. Evolutionary Strategies

In our proposed framework, the clones are randomly divided
into multiple subpopulations following a uniformly random
distribution. Then, multiple subpopulations are evolved sep-
arately by using multiple evolutionary strategies. The use
of multiple evolutionary strategies in the hybrid framework
mitigates the risk of using a single strategy, which may be
inappropriate or ineffective for a particular problem. This phe-
nomenon is validated in the experimental studies described in
Section IV-F. This hybrid strategy enhances the global search
capability of HEIA as well as its robustness when solving
different types of complicated MOPs. Here, two groups of

evolutionary operators are used to illustrate the behavior of
our hybrid framework.

1) Evolution 1: In this phase, SBX followed by
polynomial-based mutation are adopted. SBX is an impor-
tant recombination operator adopted in several MOEAs and
MOIAs using real-valued variables [2], [3], [24], [25], [43].
Let us assume that the antibody population after cloning is
denoted by C = [c1, c2, . . . , cN], where N is the popula-
tion size. For each individual x = (x1, x2, . . . , xn) in C, the
other parent y = (y1, y2, . . . , yn) is randomly selected from
A (these are the antibodies selected from the elitist archive
for cloning). Let wi and vi (i = 1, 2, . . . , n) be max(xi, yi)

and min(xi, yi), respectively. The SBX operator was origi-
nally defined in [28]. Here, a few modifications were made
for improving its performance [61]. It works as

z0
i = 0.5[(wi + vi) − β0 × (wi − vi)] (10)

z1
i = 0.5[(wi + vi) + β1 × (wi − vi)] (11)

where z0
i and z1

i are two decision variables of the generated
child antibodies, and βj( j = 0, 1) are obtained as

βj =
⎧
⎨

⎩

[
rj × aj

]1/(η+1), if rj ≤ 1
aj[

1
2−rj×aj

]1/(η+1),

otherwise
(12)

where rj( j = 0, 1) are uniformly distributed random numbers
in [0, 1]; η is a crossover distribution index, a larger value of
which will generate child solutions near to the parent solutions
with a higher probability; aj( j = 0, 1) are defined as follows
(assuming that wi �= vi):

aj =

⎧
⎪⎪⎨

⎪⎪⎩

2 −
(

1 +
(

2
vi − li
wi − vi

))−(η+1)

j = 0

2 −
(

1 +
(

2
ui − wi

wi − vi

))−(η+1)

j = 1

(13)

where li and ui are the lower and upper bounds of the ith
decision variables, respectively. After applying SBX, a new
antibody x′ = (x′

1, x′
2, . . . , x′

n) is reorganized by randomly

assigning x′
i with z0

i or z1
i (i = 1, 2, . . . , n).

Then, the new antibody x′ is further permuted by using
polynomial-based mutation, defined as

x′′
i = x′

i + σ × (ui − li), i = 1, 2, . . . , n (14)

where x′′
i and x′

i are the ith decision variables after and before
mutation, respectively; σ is a small variation, generated by

σ =

⎧
⎪⎪⎨

⎪⎪⎩

[
2r + (1 − 2r) × σ

η+1
1

] 1
η+1 − 1, if r < 0.5

1 −
[
2(1 − r) + (2r − 1) × σ

η+1
2

] 1
η+1 otherwise

(15)

where r is a uniformly distributed random number in [0, 1]
and η is a mutation distribution index. A larger value of η

generates smaller variances on average. The values of σ1 and
σ2 are defined as

σ1 = x′
i − li

ui − li
and σ2 = ui − x′

i

ui − li
(16)
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Algorithm 2 Selection(P1, P2, E)
1 collect P1, P2 into E;
2 for i =1 to |E|
3 for j = i+1 to |E|
4 if (Ej � Ei) //Pareto domination in (2)
5 mark Ei as adominated individual;
6 else if (Ei � Ej)
7 mark Ej as adominated individual;
8 end if
9 end for
10 end for
11 delete the dominated solutions from E;
12 if (|E| > NE)
13 calculate the crowding distance [2] for each individual in E;
14 while(|E| > NE)
15 delete one individual with smallest crowding distance;
16 recalculate the crowding distance [2] for each individual in E;
17 end while
18 end if

At last, x′′
i is checked to see if it is still included in the

boundary of the ith decision variable. If not, x′′
i is set as the

corresponding boundary value, as

x′′
i =

{
li if x′′

i < li
ui if x′′

i > ui.
(17)

2) Evolution 2: DE is a very powerful recombination
operator, which is especially suitable for complicated prob-
lems with linkages in the decision variables [29], [59], [60].
It has been adopted to solve a wide variety of optimization
problems, including multimodal optimization problems and
MOPs. Assuming that each individual in C is represented by
x = (x1, x2, . . . , xn), a new antibody x′ is generated as

x
′
i =

{
xi + F × (

xr1
i − xr2

i

)
if r < CR

xi otherwise
(18)

where F and CR are two control parameters, r is a uniformly
distributed random number in [0, 1], and r1 and r2 are two
uniformly distributed random integers for selecting two parents
in the specified population P. In this paper, two strategies for
the selection of P are presented. The first one is to select
two different parents from A, which encourages performing
global search as the antibodies in A are less-crowded in the
elitist archive. The other one chooses two distinct parents from
the neighbors of x, which is beneficial for searching the local
area. Let us assume that the number of neighbors is T. In
our scheme, the definition of neighbors consists in finding the
T closest antibodies according to the value of one randomly
chosen objective function. This set of neighbors is denoted by
N(x). The selection of the parent population is controlled by
a probability parameter δ, defined by

P =
{

N(x) if r < δ

A otherwise.
(19)

After applying DE crossover, polynomial-based mutation
defined in (14) is also adopted to permute the new antibody x′.

C. Elitist Archive and Selection

After applying the two above evolutionary strategies, two
subpopulations (P1 and P2) are collected into the elitist

Algorithm 3 Complete Algorithm HEIA
1 Initialization (Algorithm 1);
2 while g<max_g
3 sort the antibodies in E descendingly according to the affinities;
4 select NA antibodies with high affinities;
5 for i=1 to NA
6 compute the clone number qi for ai using(7)-(9);
7 for j=1 to qi // subpopulation division
8 if rand()<0.5
9 add ai to P1;
10 else
11 add ai to P2;
12 end if
13 end for
14 end for
15 evolve subpopulation P1 using evolution 1 (Section III.B.1);
16 evolve subpopulation P2 using evolution 2 (Section III.B.2);
17 Selection(P1, P2 , E) (Algorithm 2);
18 g = g+1;
19 end while
20 output E;

archive (E) and then Pareto dominance [2] is applied to find
the nondominated antibodies. With the evolution of multiple
generations, the number of nondominated antibodies may be
very large. Therefore, a proper selection mechanism is needed
to limit the size of the elitist archive and for helping to
guide the search direction toward PFtrue. In most of the cur-
rent selection strategies, Pareto dominance is first employed
to determine nondominated individuals and then the density
estimation information is further adopted to maintain the pop-
ulation diversity [2], [3], [23]–[25]. In this paper, a selection
mechanism presented in our previous work [25] is adopted,
which performs a fine-grained selection procedure for the non-
dominated antibodies. Once the size of the elitist archive is
larger than the predefined size NE, the most crowded indi-
vidual is deleted and then the crowding-distance values of
its neighbors are recalculated. The pseudocode of this fine-
grained selection mechanism is shown in Algorithm 2, where
the inputs are the two resultant subpopulations P1 and P2 that
have been, respectively, permutated by the two above evolu-
tionary strategies, as well as the elitist archive E. This selection
procedure will finally maintain NE nondominated solutions in
the elitist archive E.

D. Full Algorithm HEIA

The above sections have introduced the main components
of HEIA, i.e., cloning, evolutionary strategies, elitist archive,
and selection. Other implementation details are described in
the pseudocode of HEIA, as illustrated in Algorithm 3, where
g and max_g, respectively, denote the current generation and
the maximum number of generations, and rand() returns
a uniformly distributed random number in [0, 1].

After the initialization described in Algorithm 1,
HEIA enters the loop of the evolutionary process until
the maximum number of generations, max_g, is achieved. At
first, NA antibodies with high affinities are picked out from
the elitist archive E, by sorting the antibodies descendingly
according to their affinities. Then, each selected antibody
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TABLE I
PARAMETERS SETTINGS OF ALL THE ALGORITHMS COMPARED

ai(i = 1, 2, . . . , NA) is reproduced by cloning qi copies,
and each clone is randomly assigned to two subpopulations
P1 and P2 in lines 7–13. After that, two subpopulations P1
and P2 are, respectively, permutated using evolution 1 and
evolution 2 as described in Sections III-B1 and III-B2. At
last, the mutant subpopulations P1 and P2 and the original
archive E are used as the input to run Algorithm 2, which
will keep NE nondominated solutions in E. The above
evolutionary phase will be repeated until the (predefined)
maximum number of generations, max_g, is reached. At the
end of the algorithm, the nondominated solutions in E are
reported as our final PFknown.

IV. EXPERIMENTAL RESULTS

A. Test Problems

Several types of test problems are adopted to evaluate the
performance of HEIA. First, the popular ZDT problems are
used [30]. Due to their lack of features such as variable link-
ages and objective function multimodality, this test suite is not
particularly challenging. Therefore, the bi-objective WFG and
UF problems are also adopted as they are characterized by
presenting convexity, concavity, discontinuity, nonuniformity,
and the existence of many local PFs [26], [31]. Moreover, the
three-objective DTLZ test problems are used to further exam-
ine the performance of HEIA in handling MOPs with more
than two objectives [32]. Thus, we used a total of 28 test prob-
lems (ZDT1-ZDT4, ZDT6, WFG1–WFG9, UF1–UF7, and
DTLZ1–DTLZ7) in our experimental studies. This large set
is comprehensive and sufficient to assess the performance of
multiobjective algorithms. It is noted that for ZDT1–ZDT3
and all UF problems, the number of decision variables is 30,
while the number of decision variables in ZDT4 and ZDT6,
all the WFG and the DTLZ problems, is 10. In the WFG
problems, their ten decision variables consist of eight posi-
tion parameters and two distance parameters. The details of
the ZDT, WFG, UF, and DTLZ test problems are available
in [26], [30], [31], and [32], respectively.

B. Performance Measure

The goal of MOPs is to find a uniformly distributed set
that is as close to the PFtrue as possible. As the inverted
generational distance (IGD) metric [29] can examine conver-
gence and diversity simultaneously, it is used to assess the

performance of all the compared algorithms in our experi-
mental studies.

Let S be a set of solutions that are uniformly distributed
along PFtrue and let S′ be the set of best solutions (i.e.,
PFknown) that are found by an algorithm. The IGD value of S
to S′, i.e., IGD(S, S′) is defined as

IGD
(
S, S′) =

∑|S|
i=1 d

(
Si, S′)

|S| (20)

where |S| returns the size of the set S and d(Si, S′) denotes
the minimum Euclidean distance in objective space between
Si and the individuals in S′. IGD requires to know PFtrue in
advance. The subsets of PFtrue adopted in our experiments
can be found in http://jmetal.sourceforge.net/problems.html. In
general, a lower value of IGD(S, S′) is preferred as it indicates
that S′ obtains a more even coverage of PFtrue and is closer
to PFtrue.

C. Experimental Settings

In our experiments, in order to assess the performance
of HEIA, we compared it with respect to several types of
nature-inspired heuristic algorithms for solving MOPs, includ-
ing NSGA-II [2], SPEA2 [3], AbYSS [20], MOEA/D [29],
and SMPSO [33]. Moreover, we also compared HEIA with
respect to three recently proposed MOIAs, i.e., NICA [23],
NNIA [24], and MIMO [25]. All the algorithms have shown
a competitive performance when solving MOPs. Thus, a com-
parison of our results with those produced by such algorithms
should provide a comprehensive performance assessment for
the proposed HEIA algorithm.

The parameters settings of the compared algorithms were
established as recommended in [2], [3], [20], [23]–[25],
[29], and [33], as summarized in Table I. It is worth noting
that the parameters of the compared algorithms were properly
tuned to solve most of the MOPs adopted in our experi-
mental studies. To allow a fair comparison, the parameters
of HEIA were set according to those of the compared algo-
rithms. In Table I, N is the population size; pc is the crossover
probability and pm is the mutation probability; and ηc and ηm

are the distribution indexes of SBX and polynomial mutation,
respectively. For AbYSS, NRefSet1 and NRefSet2 are the sizes
of RefSet1 and RefSet2, respectively. In MOEA/D, T defines
the size of the neighborhood in the weight coefficients, δ con-
trols the probability that parent solutions are chosen from T

http://jmetal.sourceforge.net/problems.html
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TABLE II
COMPARISON OF RESULTS ON THE ZDT TEST PROBLEMS

neighbors and nr is the maximum number of parent solutions
that are replaced by each child solution. C1 and C2 are two
control parameters randomly picked within the range [1.5, 2.5]
in SMPSO. For NNIA, MIMO, and HEIA, NA is the size of
selected antibodies for cloning proliferation. A and B are the
two control parameters used in the adaptive mutation opera-
tor of MIMO and R is the clonal rate in the entire cloning of
NICA. The external archive size NE is usually set to the same
value as N.

It is noted that the settings of N and NA listed in Table I
are only applied for the ZDT problems and that the maxi-
mum number of function evaluations was set to 25 000. When
handling other MOPs, the population size and the maximum
number of function evaluations were adjusted based on the
difficulty and complexity of the MOP to be solved. For solv-
ing the more difficult WFG and three-objective DTLZ test
problems, the population sizes were set to 200 and 500,
respectively. In this case, the maximum number of function
evaluations was set to 105. As the UF problems are extremely
complicated, all the algorithms adopted a population size of
300 and the maximum number of function evaluations was set
to 3 × 105. The settings of NRefSet1, NRefSet2, and NA on these
test problems were proportionally adjusted with the population
size N. The rest of the parameters settings were the same as
listed in Table I. All the experiments were run 100 times (using
different random seeds), the mean IGD values, and the corre-
sponding standard deviations (std) of which were collected for
comparison. The best results are identified in boldface in the
comparison tables. Moreover, in order to have a statistically
sound conclusion, the Wilcoxon’s rank sum test was further
conducted to assess the statistical significance of the difference
between the results obtained by HEIA and those obtained by
the other algorithms with a significance level α = 0.05.

D. Comparisons of HEIA With NSGA-II, SPEA2, AbYSS,
MOEA/D, and SMPSO

1) Comparisons on the ZDT Test Problems: Table II pro-
vides the experimental results of all the algorithms on the

ZDT problems. The results show that NSGA-II, SMPSO, and
HEIA were able to find good approximations of PFtrue for all
the ZDT problems as the corresponding mean values of IGD
are under an accuracy level of 10−3. SPEA2 also obtained
good approximations of PFtrue on ZDT1, ZDT2, and ZDT3,
while AbYSS performed well on ZDT1, ZDT2, and ZDT6.
Although MOEA/D obtained the best performance on ZDT6, it
gave the worst results on ZDT1–ZDT4. As ZDT3 has a PFtrue
with multiple disconnections, AbYSS and MOEA/D failed to
approach all the disconnected parts of PFtrue in some runs.
ZDT4 has many local PFs, which increases the difficulty in
searching for PFtrue. SPEA2, AbYSS, and MOEA/D could not
effectively approach the PFtrue of ZDT4. SPEA2 performed
worse on ZDT6 as it has a nonuniform search space. Moreover,
the Wilcoxon’s rank sum test indicates that HEIA performed
similarly to AbYSS on ZDT1 and ZDT6, and to SMPSO
on ZDT3 and ZDT6, respectively. The last third row labeled
“Rank Sum” summarizes the ranks obtained by all the algo-
rithms in solving all the ZDT problems, and the last second
row labeled “Final Rank” shows the final ranks of all the algo-
rithms according to Rank Sum. As observed from the Final
Rank row, SMPSO and HEIA obtained the first and second
ranks, respectively, while MOEA/D obtained the last rank. The
last row “better/worse/similar” indicates the number of test
problems in which the performance of the compared algorithm
was better than, worse than, or similar to that of HEIA. This
row also indicates that HEIA performed worse than SMPSO,
but it was better than any of the other algorithms.

It is pointed out that when the IGD values are under an
accuracy level of 10−3, the found solution sets are uniform
enough to closely approximate PFtrue. In Fig. 2, the PFknown
obtained by HEIA on all the ZDT problems are illustrated.
As other compared algorithms also obtained mean IGD results
under an accuracy level of 10−3 for some ZDT problems, their
performance was similar and, therefore, is relatively indistin-
guishable when graphed; however, we plotted the results of
MOEA/D in Fig. 2, which delivered the worst overall results,
to give a sense of the range of solution qualities obtained.
It is noted that only one final set that has the IGD value
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Fig. 2. Nondominated solution sets found by HEIA and MOEA/D on the ZDT problems. (a) ZDT1–HEIA. (b) ZDT2–HEIA. (c) ZDT3–HEIA. (d) ZDT4–HEIA.
(e) ZDT6–HEIA. (f) ZDT1–MOEA/D. (g) ZDT2–MOEA/D. (h) ZDT3–MOEA/D. (i) ZDT4–MOEA/D. (j) ZDT6–MOEA/D.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Nondominated solution sets found by all the algorithms on WFG1. (a) WFG1–HEIA. (b) WFG1–MOEA/D. (c) WFG1–SMPSO. (d) WFG1–NSGA-II.
(e) WFG1–SPEA2. (f) WFG1–AbYSS.

closest to the mean IGD value in 100 runs was plotted in
Fig. 2. Except for SMPSO, which performed better than HEIA,
all the other algorithms had a performance ranking located
between HEIA and MOEA/D. As observed in Fig. 2, where
the PFtrue are identified with red color, the PFknown found by
HEIA have a uniform distribution along the PFtrue on all the
ZDT problems. For MOEA/D, it is found that the obtained sets
of PFknown are also distributed uniformly, but not so close to
PFtrue, especially on ZDT4, which has many local PFs. These
plots confirm that HEIA can consistently find an evenly dis-
tributed PFknown to closely approach PFtrue of all the ZDT
problems, while MOEA/D fails to get a good approximation
set for some ZDT problems.

2) Comparisons on the WFG Test Problems: In Table III,
the comparisons on the WFG problems are illustrated. As
observed in Table III, HEIA performed best on WFG1, WFG6,
and WFG8, while SMPSO obtained the best results on WFG2,
WFG3, and WFG7. AbYSS provided the best performance on

WFG4 and WFG5, while SPEA2 performed best on WFG9.
The Wilcoxon’s rank sum test shows that HEIA achieved sta-
tistically similar results to SPEA2 on WFG9, to AbYSS on
WFG3 and WFG9, to MOEA/D on WFG2, and to SMPSO
on WFG6. As revealed by the Final rank row, HEIA per-
formed best when considering all the WFG problems. SMPSO
and SPEA2 obtained the second and third ranks, respec-
tively. Moreover, MOEA/D, AbYSS, and NSGA-II obtained
the fourth, fifth, and sixth ranks, respectively. As the WFG
problems are more difficult than the ZDT problems, the supe-
rior performance of HEIA on the WFG problems further
confirms its advantages.

In Fig. 3, we plotted the final nondominated sets obtained
by all the algorithms on WFG1, as WFG1 seems to be the
most difficult problem to solve, since some algorithms failed
to reach a close PFknown for it. One final set that has the IGD
value closest to the mean IGD value obtained from 100 inde-
pendent runs was plotted in Fig. 3. It is observed that the
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TABLE III
COMPARISON OF RESULTS ON THE WFG TEST PROBLEMS

TABLE IV
COMPARISON OF RESULTS ON THE UF TEST PROBLEMS

PFknown of HEIA is distributed evenly along PFtrue. Although
MOEA/D and SMPSO also produced the final sets of PFknown
close to PFtrue, such sets did not have a uniform distribution.
NSGA-II and SPEA2 only approached half of PFtrue, while
AbYSS failed to approximate PFtrue in this case.

3) Comparisons on the UF Series Problems: Table IV lists
our experimental results on the UF problems, which have very

complicated PSs and thus present more challenges to multiob-
jective algorithms. As observed in Table IV, HEIA performed
best in three test problems, i.e., UF2, UF4, and UF5. MOEA/D
obtained the best results on UF1, UF3, and UF7, while
NSGA-II produced the best approximation on UF6. Moreover,
the Wilcoxon’s rank sum test shows that HEIA obtained sta-
tistically similar results to NSGA-II and MOEA/D on UF6.
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(a) (b) (c) (d)

Fig. 4. Nondominated solution sets found by HEIA and SMPSO on UF1 and UF2. (a) UF1–HEIA. (b) UF1–SMPSO. (c) UF2–HEIA. (d) UF2–SMPSO.

TABLE V
COMPARISON OF RESULTS ON THE DTLZ TEST PROBLEMS

Considering all the UF problems, HEIA performed best as it
obtained the first rank in the Final rank row. Moreover, the
last row in Table IV also indicates that HEIA performed bet-
ter than NSGA-II, SPEA2, AbYSS, and SMPSO on most of
the UF problems. Only MOEA/D obtained a similar perfor-
mance to that of HEIA as it performed better in three out of
seven UF problems and had a similar performance in another
one. The promising results on the UF problems also confirm
the advantages of HEIA.

In Fig. 4, we plotted the final nondominated sets obtained
by some of the compared algorithms on UF1 and UF2. As the
IGD values of NSGA-II, SPEA2, AbYSS, and SMPSO on UF1
and UF2 are all under an accuracy level of 10−2, their final
sets of PFknown will look very similar in these plots. Thus, the
PFknown obtained by SMPSO is plotted as the representation
of NSGA-II, SPEA2, AbYSS, and SMPSO. Also, the PFknown
obtained by HEIA is plotted as the representation of HEIA and
MOEA/D. The plots in Fig. 4 show that HEIA can closely
approach the PFtrue of UF1, while SMPSO only finds some
disconnected parts that are not so near to PFtrue. For UF2, the
PFknown of HEIA achieves a more even coverage of PFtrue and
is closer to PFtrue than the approximation obtained by SMPSO.

4) Comparisons on the DTLZ Test Problems: In the above
experiments, HEIA had a very promising performance when

solving all of the ZDT, WFG, and UF test problems. However,
these problems have only two objectives. In order to fur-
ther assess the performance of HEIA on MOPs with more
than two objectives, the DTLZ problems [32] were adopted.
Table V shows the comparison of results when solving all the
DTLZ test problems. As observed in Table V, HEIA provided
the best results on DTLZ1 and DTLZ3. SPEA2 performed
best on DTLZ2 and DTLZ7. MOEA/D, AbYSS, and SMPSO
achieved the best results on DTLZ4, DTLZ5, and DTLZ6,
respectively. Moreover, the Wilcoxon’s rank sum test indi-
cates that HEIA had a similar performance as MOEA/D
on DTLZ1 and DTLZ3. However, the mean and std values
of MOEA/D are larger than those of HEIA, which indi-
cate that MOEA/D cannot consistently approach the PFtrue of
DTLZ1 and DTLZ3. Also, HEIA obtained statistically sim-
ilar results to NSGA-II on DTLZ2, to AbYSS on DTLZ7,
and to SMPSO on DTLZ6. The Final rank row indicates that
SMPSO and HEIA obtained the first rank and the second
rank, respectively, while AbYSS and MOEA/D had a compa-
rable performance with the third place in the ranking. SPEA2
and NSGA-II also performed similarly with fourth place in
the ranking. Moreover, the last row in Table V also indi-
cates that HEIA performed better than NSGA-II, SPEA2,
and SMPSO as HEIA performed better in four out of seven
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Fig. 5. Nondominated solution sets found by HEIA, NSGA-II, and SPEA2 on DTLZ3. (a) HEIA. (b) NSGA-II. (c) SPEA2.

TABLE VI
FINAL RANK OF ALL THE ALGORITHMS ON THE ZDT, WFG, UF, AND DTLZ PROBLEMS

TABLE VII
FINAL COMPARISONS OF ALL THE ALGORITHMS ON THE ZDT, WFG, UF, AND DTLZ PROBLEMS

DTLZ test problems. Also, HEIA outperformed MOEA/D as
HEIA performed better, worse, and similarly on three, two,
and two out of seven test problems, respectively. For AbYSS,
HEIA had a comparable performance as they both performed
better on three DTLZ problems.

In Fig. 5, some plots of the final sets on DTLZ3 are given
as DTLZ3 has many local PFs and is difficult to solve. The
plots of AbYSS, MOEA/D, and SMPSO are not evidently dif-
ferent from those of HEIA. Therefore, the plot of HEIA is
used as a representation of all of them. As observed from
Fig. 5, both the final sets of HEIA and NSGA-II correspond to
good approximation sets, but the one of HEIA provides a more
even coverage of PFtrue and is closer to PFtrue. SPEA2 can-
not approach PFtrue and only finds the solutions near the
boundaries of PFtrue.

In Table VI, we collected the rank sums of HEIA, NSGA-II,
SPEA2, AbYSS, MOEA/D, and SMPSO on all the ZDT,
WFG, UF, and DTLZ test problems. When considering all
of the test problems, the final rank indicates that HEIA per-
formed better than NSGA-II, SPEA2, AbYSS, MOEA/D, and
SMPSO. Moreover, we also gathered the comparison results
of HEIA with other algorithms in Table VII. The last second
row illustrates the total comparison results of HEIA on all the
test problems, and the last row provides the summary of the
comparison performance of HEIA with respect to the other
algorithms. The final ranking shown in Table VII also con-
firms the advantages of HEIA as it performs better than the

TABLE VIII
COMPARISON OF RESULTS WITH RESPECT TO NNIA, MIMO,

AND HEIA ON THE ZDT TEST PROBLEMS

compared algorithms on most of the test problems adopted.
Based on the above experimental results, it is reasonable to
conclude that HEIA is able to tackle various kinds of test
problems and its advantages are more evident when solving
complicated test problems, such as those included in the WFG
and UF test suites.



LIN et al.: HYBRID EVOLUTIONARY IMMUNE ALGORITHM FOR MOPs 723

TABLE IX
COMPARISON OF RESULTS WITH RESPECT TO NNIA, MIMO,

AND HEIA ON THE UF TEST PROBLEMS

E. Comparisons With Other MOIAs

The above simulations have shown the advantages of
HEIA when compared with other nature-inspired multiobjec-
tive algorithms. In this section, we further compare HEIA with
three MOIAs (i.e., NICA [23], NNIA [24], and MIMO [25]),
all of which were designed based on the clonal selection prin-
ciple. As pointed out above, the use of a simple evolutionary
operator in basic MOIAs is not so suitable for solving dif-
ferent types of MOPs due to its monotonic search patterns.
This will cause some difficulties when handling complicated
MOPs. Therefore, we provide a comparison of results with
respect to NNIA, MIMO, and HEIA on the ZDT problems
and the UF test problems in Tables VIII and IX, respectively.

For the ZDT problems in Table VIII, it is observed that all
the IGD values are under an accuracy level of 10−3, which
indicates that all of NNIA, MIMO, and HEIA can closely
approach PFtrue. The Wilcoxon’s rank sum test shows that
HEIA is significantly better than MIMO and NNIA on all the
ZDT problems. Furthermore, when solving the UF test prob-
lems, it is found that HEIA performs better than NNIA and
MIMO on all of them as indicated by the results in Table IX.
The Wilcoxon’s rank sum test indicates that the IGD results
of HEIA are all significantly better than those obtained by
NNIA and MIMO. These experimental results validate that
the simple evolutionary operator in NNIA and MIMO only
performs well in solving simple test problems (i.e., the ZDT
problems), but is unable to reach the PFtrue of complicated
MOPs (i.e., the UF test problems). However, HEIA can con-
sistently achieve promising results on both of the ZDT and of
the UF test problems, which validates the effectiveness of our
proposed hybrid framework for MOIAs. Moreover, referring
to Tables II, IV, VIII, and IX, one interesting phenomenon

TABLE X
COMPARISONS OF RESULTS WITH RESPECT TO

NICA AND HEIA ON ZDT1–ZDT4

is observed: early reported MOIAs generally outperform clas-
sical MOEAs on most of the simple ZDT problems (i.e.,
NNIA performs better than NSGA-II, and MIMO performs
better than NSGA-II and SPEA2). This is mainly due to the
clonal selection principle adopted in NNIA and MIMO, which
helps to accelerate the convergence rate on the simple ZDT
problems. However, when tackling the complicated UF prob-
lems, it is found that NNIA and MIMO are outperformed by
NSGA-II and SPEA2 as the evolutionary search based on SBX
and polynomial-based mutation is ineffective for searching the
complicated PS of the UF problems and the cloning of a small
proportion of the population will lower the population diver-
sity of NNIA and MIMO. Different from NNIA and MIMO,
a hybrid evolutionary framework, where different subpopula-
tions undergo different evolutionary strategies separately, is
adopted in HEIA, which makes it capable of solving both of
the ZDT and the UF test problems.

Furthermore, a comparison of results between NICA and
HEIA on ZDT1–ZDT4 is provided in Table X. These results
were obtained by performing 50 000 function evaluations.
Two additional performance measures, i.e., generational dis-
tance (GD) and spacing [2], were adopted to assess conver-
gence and diversity, respectively. It is noted that 500 uni-
formly distributed points of PFtrue are used to obtain the
GD values. Regarding the GD values, it is obvious that
HEIA always found solution sets with better convergence than
NICA. When considering the diversity metric, HEIA was bet-
ter than NICA on ZDT1, ZDT2, and ZDT4. Only for ZDT3,
which has a disconnected PFtrue, HEIA performed worse.
However, as observed from Fig. 2(c), the population diversity
of HEIA on ZDT3 is quite uniform. Therefore, we claim that
HEIA is better than NICA in terms of both convergence and
diversity when considering all the ZDT problems in Table X.

F. Advantages of the Hybrid Evolutionary Strategies

In this paper, two evolutionary strategies were adopted
to form HEIA as an implementation example of our pro-
posed hybrid framework. In order to study the advantages
of such a framework and to show how the two evolutionary
strategies cooperate with each other, we also provide experi-
mental results of HEIA using only one evolutionary strategy
at a time, i.e., HEIA-I utilizes the first evolutionary strategy
(SBX and polynomial-based mutation) and HEIA-II adopts the
second one (DE crossover and polynomial-based mutation).
In Tables XI and XII, a comparison of results among HEIA-I,
HEIA-II, and HEIA on the ZDT and the UF test problems
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TABLE XI
COMPARISON OF RESULTS WITH RESPECT TO HEIA-1, HEIA-2,

AND HEIA ON THE ZDT TEST PROBLEMS

is provided. It can be seen from Table XI that HEIA-I is bet-
ter than HEIA-II in solving all the ZDT problems. Particularly,
on the ZDT4 problem, HEIA-I can obtain a uniform approxi-
mation set close to PFtrue; however, HEIA-II is unable to reach
PFtrue as its IGD value on ZDT4 is larger than 7 (the ideal
IGD value is zero). These experiments indicate that the first
evolutionary strategy is more capable for tackling the ZDT
problems. Moreover, the cooperation of the two evolutionary
strategies consistently performs better on all the ZDT prob-
lems, which validates our hypothesis that each evolutionary
strategy can enhance the search capabilities of the other one.
In Table XII, HEIA performed best on six out of seven of
the UF test problems. Only for UF3, HEIA performed worse
than HEIA-II. For the rest of the UF test problems, it is
shown that the cooperation of the two evolutionary strategies
in HEIA can significantly enhance the performance of HEIA-I
and HEIA-II. For example, for the UF1, UF2, and UF7 test
problems, HEIA obtained a significantly better performance
and its corresponding IGD values were all under an accuracy
level of 10−3, which indicates that HEIA was able to find
good approximation sets for these problems. This further con-
firms the effectiveness of our hybrid framework and that the
cooperation of the hybrid evolutionary strategies is beneficial
for enhancing their search capabilities.

G. Analysis of the Parameters Settings

The parameters settings adopted in HEIA are listed in
Table I. In order to study their effect on the performance of
HEIA, we conducted an experimental study of one-at-a-time
sensitivity analysis. As the parameters settings in the SBX and
the polynomial-based mutation operators have been substan-
tially investigated in [28], their analysis is not repeated here.
The effect of parameter N (population size) is quite evident:
under the same number of generations, a larger value of N will
produce a better performance. The neighbor size T is chosen
depending on the value of N and the number of the objectives.
For the rest of the parameters, such as NA, δ, CR, and F, they

TABLE XII
COMPARISON OF RESULTS WITH RESPECT TO HEIA-I, HEIA-II, AND

HEIA ON THE UF TEST PROBLEMS

are respectively studied in the following subsections to investi-
gate their influence on HEIA. Five representative values for NA
(i.e., 20, 40, 60, 80, and 100), δ (i.e., 0.1, 0.3, 0.5, 0.7, and 0.9),
CR (i.e., 0.2, 0.4, 0.6, 0.8, and 1.0), and F (i.e., 0.1, 0.3, 0.5,
0.7, and 0.9) were adopted to solve three test problems with
different types of difficulties, i.e., ZDT1, WFG1, and UF1.
Thus, there is a total of 625 combinations of NA, δ, CR, and
F values for each test problem and other parameters settings
were the same as those listed in Table I except that the popula-
tion sizes are all set to 100 for ZDT1, WFG1, and UF1. All the
simulations have been repeated 100 times for each combina-
tion and their corresponding mean IGD results are illustrated
using box plots [62], in which the central red line indicates
the median value, the edges of the box are the 25th and 75th
percentiles, and the red symbol “+” denotes outliers. Finally,
the Kolmogorov–Smirnov test with a 5% significance level
was further used to detect the statistical differences between
two samples in each plot. It is noted that a black star * above
the box indicates that the corresponding sample has statistical
differences with other samples.

1) NA (Number of Selected Antibodies for Cloning): When
performing the cloning operator in (6), only NA antibodies
with high affinities are selected from the external archive.
Fig. 6 shows the distribution of IGD results on ZDT1, WFG1,
and UF1, which were obtained by HEIA with different NA
values from 625 combinations. For the ZDT1 problem, it is
observed that the IGD results are significantly increased with
respect to the NA values, so that a smaller value of NA is
better for ZDT1. This is mainly because more cones can be
assigned to a small proportion of high-affinity antibodies under
a fixed population size, which helps to accelerate the con-
vergence speed. When solving more difficult problems such
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Fig. 6. Box plots of the IGD results obtained by HEIA with different NA values on (a) ZDT1, (b) WFG1, and (c) UF1.

Fig. 7. Box plots of the IGD results obtained by HEIA with different δ values on (a) ZDT1, (b) WFG1, and (c) UF1.

as WFG1 and UF1, most of the IGD results are statistically
similar, so that the impact of NA is less significant on the
WFG1 and UF1 problems. Therefore, if we consider all the
test problems, a small value of NA (e.g., between 20 and 40) is
suggested.

2) δ (Control Parameter for Selecting the Parent Individuals
in the DE Operator): As introduced in Section III-B, two par-
ents are selected from population P in order to perform DE
crossover. P can be specified as A (the selected antibody set
for cloning) or the neighbors of x, which is controlled by the
probability parameter δ. When P is set as A, DE crossover
can perform global search as the antibodies in A are the
least-crowded ones, which cover most of the currently found
approximated front. Otherwise, P is assigned by the neighbors
of x, which can search in the local area around x.

Fig. 7 presents the box plots of the IGD results obtained
by HEIA with different δ values on ZDT1, WFG1, and UF1.
The Kolmogorov–Smirnov test shows that all the IGD results
plotted in Fig. 7(a)–(c) do not have a significant difference in
solving ZDT1, WFG1, and UF1. These experimental results
indicate that the performance of HEIA is not so sensitive to δ

on ZDT1, WFG1, and UF1.
3) CR and F (Two Control Parameters in the DE Operator):

The crossover rate CR and the scaling factor F are two
important control parameters when generating new antibodies
in (18), where CR controls how many variables are inherited
from the mutant vectors and F adjusts the mutation scale.

The box plots of the IGD results obtained by HEIA with dif-
ferent values of CR and F are illustrated in Figs. 8 and 9. From
Fig. 8(a)–(c), we can observe that a smaller value of CR can

give significantly better performance for solving ZDT1, while
a larger value of CR performs significantly better on WFG1
and UF1. This is reasonable as ZDT1 is a simple test prob-
lem, in which a smaller CR value can make offspring to inherit
more information from the parents, thus speeding up conver-
gence. However, the use of more inheritance from the parents
will lower population’s diversity, which makes HEIA unsuit-
able for difficult problems such as WFG1 and UF1. Thus,
the performance of HEIA is sensitive to the selection of
CR when tackling different kinds of MOPs. On the other
hand, the IGD results shown in Fig. 9(a)–(c) indicate that
a larger value of F is preferred for ZDT1 and WFG1, while
a smaller value of F is more suitable for UF1. This is also
supported by the Kolmogorov–Smirnov test, which indicates
that HEIA performs significantly worse on ZDT1 and WFG1,
but significantly better on UF1 when the F value is set to 0.1.
Therefore, the performance of HEIA is also sensitive to the F
values when solving various kinds of MOPs. That is to say, no
fixed parameter settings of F and CR are guaranteed to always
perform well. To have a good overall performance, interme-
diate values of CR and F are suggested when considering all
the test problems adopted in this paper.

H. Time Complexity Analysis
In this section, the time complexity analysis and the prac-

tical implementation efficiency of HEIA are investigated. The
aim is to show that the hybrid framework proposed in this
paper will not have a significant negative effect on execution
efficiency. Based on the pseudocode of HEIA (Algorithm 3),
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Fig. 8. Box plots of the IGD results obtained by HEIA with different CR values on (a) ZDT1, (b) WFG1, and (c) UF1.

Fig. 9. Box plots of the IGD results obtained by HEIA with different F values on (a) ZDT1, (b) WFG1, and (c) UF1.

Fig. 10. Mean computational times (s) obtained by NSGA-II, SPEA2, and HEIA on (a) ZDT1, (b) ZDT2, (c) ZDT3, (d) ZDT4, and (e) ZDT6.

the time complexity of HEIA is mainly determined by the
evolutionary loop in lines 2–18. When calculating the time
complexity, the impact of the decision variables and the objec-
tives are ignored as they are much smaller than the population
size N. In lines 3 and 4, the time complexity is O(N logN+NA)
for the sorting procedure and for picking out NA high-affinity
antibodies; in lines 5–14, the selected high-affinity antibod-
ies are cloned and randomly divided into two subpopulations,
which take the time complexity O(N); in lines 15 and 16,
two evolutionary strategies are, respectively, performed on the
two subpopulations and the corresponding time complexity is
O(2N); at last, the fine-grained selection mechanism is oper-
ated with time complexity O(N2). Therefore, the total time
complexity of HEIA is O(N2 + NlogN + NA + 3N) ∼ O(N2).
Note that the time complexity of NSGA-II [2], SPEA2 [3],
NNIA [24], NICA [23], and MIMO [25] are, respectively,
O(N2), O(N3), O(N2), O(N2), and O(N2). Therefore, HEIA has

a time complexity which is comparable with that of two
state-of-the-art MOEAs (NSGA-II and SPEA2) and three
MOIAs (NNIA, NICA, and MIMO).

We further investigated the practical implementation effi-
ciency of HEIA with NSGA-II and SPEA2 as they all use
Pareto dominance-based comparisons and diversity mainte-
nance strategies on the combined population formed by the
offspring and the elitist archive. Fig. 10 shows the box plots
of the computational times obtained by NSGA-II, SPEA2,
and HEIA on all the ZDT problems with 25 000 func-
tion evaluations. All the algorithms were implemented on
the Java environment [61] and were run 100 times on the
same computer with dual-core 3.2 GHz CPU, 2 Gbytes of
RAM, and Windows 7 operation system. The parameters
settings were those listed in Table I. It is noted that the
Kolmogorov–Smirnov test with a 5% significance level was
also used to detect the statistical differences between two



LIN et al.: HYBRID EVOLUTIONARY IMMUNE ALGORITHM FOR MOPs 727

samples in each plot and the sample owning the statistical
differences with other samples was identified by a black star
* above the box.

From Fig. 10, we can observe that HEIA performed faster
than NSGA-II on ZDT2, ZDT3, and ZDT4 with statistical
differences. This is mainly because NSGA-II needs to find
multiple ranks of nondominated solutions, while HEIA only
finds out the first rank of nondominated solutions using a fine-
grained selection mechanism. Besides that, they all use the
crowding-distance metric [2] to maintain the population diver-
sity. SPEA2 has a slower running speed than that of HEIA and
NSGA-II, as it has to calculate the distance of the nearest
neighbor to keep the population diversity. It is very time-
consuming to find the nearest neighbor for each solution using
Euclidean distances. For all the ZDT problems, HEIA only
needs less than 0.6 s to execute 25 000 function evaluations.
These experiments indicate that HEIA has a promising running
speed. Moreover, as HEIA enables different subpopulations to
evolve separately, it can be implemented in a distributed par-
allel computing architecture. Therefore, the running speed of
HEIA can be enhanced greatly, which makes it more useful
for practical applications.

V. CONCLUSION

In this paper, an HEIA is introduced. In the proposed
framework, multiple evolutionary strategies are applied after
cloning. The cooperation of multiple evolutionary strategies is
able to enhance the capabilities and the robustness of the pro-
posed approach, allowing it to handle different types of MOPs.
An implementation example of this hybrid framework is pro-
vided using two different evolutionary strategies, which adopt
either SBX or DE crossover followed by polynomial-based
mutation, respectively. Simulation results showed that HEIA is
capable of successfully handling different types of MOPs, i.e.,
the ZDT, WFG, UF, and DTLZ test problems. When com-
pared with three MOIAs (i.e., NICA, NNIA, and MIMO) and
other nature-inspired multiobjective algorithms (i.e., NSGA-II,
SPEA2, AbYSS, MOEA/D, and SMPSO), HEIA was found to
present advantages in terms of finding a solution set with bet-
ter convergence and diversity to approach PFtrue. Moreover,
the effectiveness of our hybrid framework has justified that
two different search strategies (SBX and DE in our case)
can complement each other, thus performing better than the
isolated use of any of them. The reason for this behavior
may be that the search patterns of SBX and DE are indeed
complementary, which would allow their search outputs to
be successfully shared through the use of cloning. Finally,
the influence that its parameters have on the performance
of our proposed HEIA was also studied (experimentally) in
this paper.

Although promising results were obtained using HEIA,
there are still several issues worth studying for further
improvements. Our future research work will continue in
the following directions: 1) study the possibility to inte-
grate other evolutionary operators into our hybrid frame-
work, such as simplex crossover, parent centric crossover,
Gaussian mutation, and Cauchy mutation; 2) design an

adaptive approach to dynamically assign different com-
putational resources to different subpopulations, based on
their historical performance; and 3) extend HEIA to solve
MOPs with more than three objectives [63], [64] or in
a noisy environments [65], and apply it to real-world
applications [66].
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